医工互联

标题: 解密MRI的原理及其在医学中的应用 [打印本页]

作者: Good    时间: 2022-9-23 20:10
标题: MRI
概念

MRI:磁共振成像,英文全称是:Magnetic Resonance Imaging
原理

核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为磁共振成像术(MR)。
MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过计算机处理转换后在屏幕上显示图像。
成像原理 描述1:

核磁共振成像原理:原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。这样一来,自旋的核同时也以自旋轴和外加磁场的向量方向的夹角绕外加磁场向量旋进,这种旋进叫做拉莫尔旋进,就像旋转的陀螺在地球的重力下的转动。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。这样,自旋核还要在射频方向上旋进,这种叠加的旋进状态叫做章动。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫弛豫时间。弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间,T2为自旋-自旋或横向弛豫时间。
总结成像原理:

成像原理 描述2:

“共振成像(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。
梯度磁场

基梯度磁场是位于磁体腔内几组线圈通过电流而产生,附加在主磁场上,可以增加或减弱主磁场强度,使沿梯度方向的自旋质子具有不同的磁场强度,因而有不同类型的共振频率。
主磁场的产生依赖磁体,可以有永磁,常导,超导;目前高场强的都是超导。超导其实就是一个大磁铁,一旦电流导入,就无需再提供电流,电流在超低温下几乎不会损耗,强大的电流产生强磁场,平时主要是补充液氦。
梯度磁场是在主磁场上附加的梯度磁场,可以单梯度,可以双梯度,可以在X,Y,Z轴上设立。双梯度就是梯度转换更快。梯度磁场的用处主要在空间定位,包括相位编码及频率编码,可以通过梯度场明确空间上的任意位置。
而RF射频主要是发射信号及采集信号,通过回波信号来了解组织的特性,主要是T1,T2,质子,及流动信号。
综合上述,大磁场就是静态磁场,它的用处是磁化组织,让其有序;梯度场是人为添加,用于空间定位
通电线圈可以产生磁场,在主磁场上再附加小的磁场,让其形成某个梯度排列的磁场,此时质子的进动频率改变,在Z轴上可以分层,在XY轴上进行平面空间定位
MRI系统可能对人体造成伤害的因素:


来源:https://blog.csdn.net/xuxia_yan/article/details/78195112
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!




欢迎光临 医工互联 (https://www.yigonghl.com/) Powered by Discuz! X3.4